

REFLEX WP3 Overview and first results

Atse Louwen, Subramani Krishnan, Martin Junginger

REFLEX expert workshop "**Technological Learning in the Energy Sector**" Karlsruhe, 8 November 2017

Objective of the Work Package on Experience Curves

- Develop and implement experience curve models into the sectoral models of other WPs
 - Identify most relevant energy technologies in the electricity, heat and transport sector (supply, demand, storage)
 - Collect empirical data on installed capacity and cost development of these technologies
 - Devise/update experience curves for these technologies
 - Incorporate experience curves into the various energy models to enable endogenous modeling of technological developments and cost reductions
 - Where possible take into account (statistical) uncertainty of devised learning rates
 - Where possible decompose experience curves to account for e.g. input material prices or available geographical potential (multi-level experience curves)

Experience Curve Model Implementation in Reflex

Aims of this workshop

- To present intermediate results of the Reflex project to external experts (mainly in the morning session) and to get feedback, e.g. on additional data sources or interpretation of results
- To discuss methodological assumptions and issues encountered both within the project and in general by the experts (mainly in the afternoon session)
- To discuss new application areas of the experience curve methodology, e.g. on ex ante environmental impact assessment
- To explore the interest from external experts to also contribute to the project

Technologies included and data availability so far

Secto	r Technology	Data availability	Experience Curve		
	Onshore wind		(y)		
	Offshore wind		(y)		
	PV		У		
	Biogas/Bioenergy			Data L curvos	
d	CCGT			Dala + Cuives	
ns	CCOT			Data	
ш	Coal + CCS				
	Lignite + CCS			No data	
	Gas + CCS			Net peopible	
	OCGT			Not possible	
	OCOT				
to	Li battery		У		
E sto	RF battery		У		
	A-CAES				
	Electric boller				
×			, v		
БЗ	Power-to Mothana	Prov H2 bottom u	у		
	Power-to-Methanol	Proxy H2, bottom-u	þ		
	BEV (battery pack)		р У		
bor	HEV (battery pack)		y V		
sus	PHEV (battery pack)	k)	y		
Tra	FCV (battery pack)		v		
	Air conditioning		y V		
e	Heat pumps		y V		
Oth	CHP		,		
	micro-CHP				

First results - overview

- Electricity-supply
 - Photovoltaics
 - Onshore wind
 - Offshore wind
- \circ Power-to-H₂

First results: Photovoltaics

Utrecht University

7

First results: Photovoltaics

- Time horizon has significant effect on estimated learning rate
- Contribution of BOS has increased to around 50% of system costs now (from ~20%)
- We will probably use separate learning curves for BOS and modules
- We will use the long term trends for modules ("learning" between 2006-2016 was probably a shake-out effect)

First results – Wind onshore, farms and turbines

First results – Onshore Wind

Fig. 1. Development of costs and prices of emerging technologies (Boston Consulting Group, 1968).

Utrecht University

10 8/11/17

First results – Onshore Wind, discussion (1/2)

- Dataset going back to before 2008 show minimum around 2000-2002, followed by sharp increase up to 2008, explained by*
 - Increase in input prices (material, energy, labor)
 - Increased profitability (demand > supply)
 - Increased cost for warranty provisions
- Prices of 2016 have still not returned to 2002 minimum
- Current price trends are too limited to assess whether Post-2008 reflects the "new" market or is fluctuation like 2000-2008s (learning rate of 25-26% too high)

*(Moné et al, 2017 in Wiser et al., 2017)

First results – Onshore Wind, discussion (2/2)

- Costs shown here refer to turnkey system costs (and turbine prices) but do not account for:
 - Changes in O&M costs (decrease over time ?)
 - Changes in capacity factors (increase over time)
- A more appropriate functional unit would be EUR/MWh,as this would include these improvements
- -> we are currently looking into US data

First results – Onshore Wind, summarising

Cost per kW based on, either:

- o 6% learning rate based on 1980-now
 - Likely too low
- Optimistic learning rate based on 1980-2002
 - How to account for (limited) geographical potential onshore?
 - Translation to EUR/kWh (capacity factor, O&M)
 - Discrepancy between current costs and modeled 2017-20?? costs

First results – Wind, offshore farms Europe

- Data: 56 offshore farms in Europe (UK, DE, NL, DK)
- Capacity and installed system costs
- Coupled with global installed wind capacity (GWEC)
 - Separate for on- and offshore
- Presented here:
 - Raw data, visualised per country
 - Annual (capacity)weighted average

Offshore wind farm CAPEX, corrected for water depth and distance to shore (blue diamond)

source: Voormolen et al. (2016)

Offshore LCOE trends varying strongly per country

source: Voormolen et al. (2016)

First results – Wind, offshore farms, Europe

First results – Wind, comparison on/offshore, turbines

First results – Offshore wind

- Data is very much scattered (very different farms from 1990now)
- Only for >300MW farms of last years a learning rate of 10% is observed for EUR/kW
- Pre-2016 trends of LCOE show increase, even when correcting for distance-to-shore and commodity prices
- 2016/2017 show drastic decrease of EUR/MWh
- Also for offshore geographical potential gives constraints
- o Grid connection costs (can) optimise in future
- o So what now?
 - Experience curve do not seem suitable at the moment
 - Use exogenous estimates

First results – Alkaline Electrolysis, data collection

		Scale	Timeframe	Functional unit	Sources	
Сара	icity	Global	1956-2016	Cumulative GW	1) Schmidt, Hawkes, Gambhir, Staffell (2017), <i>The future cost of electrical energy storage based on experience rates,</i> Nature Energy	
			2)Cox & Willia Implications.		2)Cox & Williamson (1977), Hydrogen:Its technology and Implications.	
					<i>3)</i> Caprioglio, P., <i>Prosepects fro a hydrogen economy</i> . Energy Policy, September 1974, Elsevier Scientific Publishing Company, Amsterdam, 1974	
					4)Hoffman, P., <i>Tomorrow's Energy,</i> MIT Press, Cambridge, Massachusetts, 2001.	
					5) Kelly, J.H., Hydrogen Energy Syste,ms Technology Study. International Journal Hydrogen Energy, Vol1, pp 199-204, Pergamon Press Ltd., Great Britain, 1976	
Syste	em cost		1956-2016	€2017/kW	1)Schmidt, Hawkes, Gambhir, Staffell (2017), <i>The future cost of electrical energy storage based on experience rates</i> , Nature Energy	
					2) Bogers ,1975. Waterstof als energiedrager, TNO	
					3) Hammerli (1984), When will electrolytic hydrogen become competitive? International Journal of Hydrogen Energy, 1984	
_					4) Altener (2004), Market Potential Analysis for Introduction of Hydrogen Technology in Stand –Alone Power Systems.	
					5) Kuckshinrichs,W., Ketelaer, T. Koj, J.C; (2017). <i>EconOMIC Analysis of Improved Alkaline Water Electrolysis</i> . Frontiers in Energy Research, doi: 10.3389/fenrg.2017.00001	

First results – Alkaline Electrolysis

- Presented here are stack costs (EUR/kW),
- Depending on the model we might need, e.g: EUR / kg H₂
 - Electricity price 75% of total cost
- Ambition to also assess the development of specific electricity consumption (kWh/ kg H₂)

LR 18.3%

First results – P2H Discussion

- Alkaline vs PEM
- SEC (kWh/kg H₂)
- E.g. (Alkaline electrolysis):
 - 2011: 50 kWh/kg
 - 2015: 46 kWh/kg
 - 2020 (expected) : 44.7 kWh/kg

European Energy System

Alkaline		PEM			
Advantages					
Well established technology	Well established technology				
Non-noble catalysts		High voltage efficiency			
Long-term stability		Good partial load range			
Relative low cost		Rapid system response			
Stacks in the MW range]	Compact system design			
Cost effective]	High gas purity			
		Dynamic operation			
Disadvantages					
Low current densities		High cost of components			
Crossover gases]	Acidic corrosive environment			
Low partial load range		Possibly low durability			
Low dynamics		Commercialization			
Low operational pressures		Stacks below MW range*			
Corrosive liquid electrolyte					

Source: Koponen,J.,(2015). *Review of water electrolysis technologies and design of renewable hydrogen production systems.* Lappeenranta University of Technology

Source: Smolinka, T.,(2014). *Water Electrolysis: Status and Potential for Development.* Fraunhofer-Institut für Solare Energiesysteme ISE

Set-up for this afternoon

- o Three parallel sessions
 - Experience curves methodology
 - Model implementation
 - ECs and Environmental Impact
- Aims of these sessions:
 - Discuss current/new general methodological issues related to the use of experience curves / how to implement in energy & other models / discuss suitability to assess future environmental impacts
 - Discuss specific issues encountered in the Reflex project
 - => Scoping session for relevant topics for new book on experience curves

Further time planning and intended outcomes

- Implementation of experience curves in a number o the sectorspecific models within the REFLEX consortium over the next 6 months
- Comprehensive report on experience curves for specific technologies in May 2018
- Dedicated book on experience curves in mid 2019

Program for today

Plenary Sessions Wednesday, 8 th November 2017, 09:00 – 12:30 Room: 418 Chair: Dominik Möst				
Time	Торіс			
08:45	Registration			
09:00	Welcome and introduction			
	General introduction of the REFLEX project (Dominik Möst, TUD)			
	REFLEX WP3 Overview (Atse Louwen/Martin Junginger, UU)			
09:20	Experience Curves for Electricity Storage Technologies			
	Oliver Schmidt (Imperial College)			
09:50	Experience Curves for DSM technologies			
	Ulrich Reiter or Martin Jakob (TEP Energy)			
10:20	From learning curves for current technologies to new & emerging technologies Uwe Remme (IEA)			
10:50	Coffee Break			
11:20	Case study: application of experience curves in the ASTRA transport model Stephanie Heitl (Fraunhofer ISI)			
11:50	Experience Curves for Assessment of Environmental Impact Atse Louwen (Utrecht University)			
12:15	Quantum Modelling of the Learning Curve – achievements and prospects Clas-Otto Wene (Wenergy)			

Program for today

Parallel Sessions Wednesday, 8th November 2017, 13:30 – 16:20

Time	Experience Curves	Model Implementation	Environmental Impact	
	Chair: Martin Junginger (UU)	Chair: Theresa Müller (TUD)	Chair: Atse Louwen (UU)	
13:30	One vs Two-factor Experience Curves Noah Kittner Markets, spillover and radical innovations Thomas Martinsen (NMBU)	Model Implementation Theresa Müller (TUD) Tobias Fleiter (Fraunhofer ISI)	Experience Curves for Future Environmental Impact Assessment Atse Louwen (UU) Lifecycle Inventory Updating for Future Environmental Impact Assessment Mary Fuss / Lei Xu (KIT-ITAS)	
14:30	Coffee break			
14:45	Discussion	Discussion	Discussion	
16:00	Wrap up and closing (UU)			
16:20	End of workshop			
	KEJICX Analysis of the European Energy System	Utrecht University		

Some practical issues for today

- Three parallel sessions
 - Experience curves methodology- Room 418
 - Model implementation Room 16
 - ECs and Environmental Impact Room 511

Please sign the participants list – we need it

Lunch

Have a great workshop I look forward to all discussions

REFIEX Analysis of the European energy system

Back Up

First results – Electricity storage

Wind onshore - electricity

ONSHORE WIND LEVELISED COST (\$/MWh)

HX

Analysis of the European Energy System

KEI

Note: Pricing data has been inflation corrected to 2014. We assume the debt ratio of 70%, cost of debt (bps to LIBOR) of 175, cost of equity of 8% Source: Bloomberg New Energy Finance

Utrecht University

31 8/11/17

Wind onshore - electricity

Wind Power Price Trends

Wind PPA Prices Very Low, Competitive with Levelized Fuel Cost of a Gas Plant

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

European Energy System

Utrecht University

52

First results – BEV/HEV battery packs, FC stacks

First results, Storage and Vehicle Packs

- Majority of data from Schmidt et al., 2017
- Minor updates performed, could do more updates for certain datasets
- In general nice trends for batteries
- No clear scale effect, e.g.
 - Li-ion for electronics << home/utility storage
 - But: home and utility storage learn at same rate but different price levels
- No specific data for PHEV battery packs
- Supply (capacity) > Demand:
 - Do current cost trends reflect production costs, or shakeout?

First results – Power to Hydrogen

o Concept

End Use of Fuel Gas

Source: Zeng & Zhang, (2010) *Recent progress in alkaline* water electrolysis for hydrogen production and applications

Utrecht University

35 11/8/17

First results – Alkaline Electrolysis

- o KOH electrolyte
- Cathode: $2H_2O + 2^{e-} \longrightarrow H_2 + 2OH^-$ (E⁰ = 0.83V)
- Anode: 20H \longrightarrow $\frac{1}{2}O_2 + H_2O + 2e^-$ (E⁰ = 0.40V)
- Overall: $H_20 \longrightarrow H_2 + \frac{1}{2}O_2(E_0 = -1.23V)$
- Operational temperature: 50 90 °C
- o Pressure: 1-30 bar

Source: Santos, Sequeria, Figueiredo, (2013); *Hydrogen* production by alkaline electrolysis

First results – Polymer Electrolyte Membrane (PEM)

- Water reacts at the anode to form oxygen and positively charged hydrogen ions (protons).
- The electrons flow through an external circuit and the hydrogen ions selectively move across the PEM to the cathode.
- At the cathode, hydrogen ions combine with electrons from the external circuit to form hydrogen gas. Anode Reaction: $2H_2O \rightarrow O_2 + 4H^+ + 4e^-$ Cathode Reaction: $4H^+ + 4e^- \rightarrow 2H_2$
- Pressure up to 200 bar
- Temperature: 20 100 °C

First results – P2H Cost breakdown (Alkaline Electrolysis)

- Capital cost
 - Stack Capital cost
 - BOP Capital cost
 - Indirect Capital cost and replacement cost

Source: NREL (2009); Current State-of-the-Art Hydrogen Production Cost Estimate Using Water Electrolysis

First results – Alkaline Electrolysis Experience Curve

input values						
Production to storage			inflation rate 2017 (USD)			USD € exchange rate
kW	kWh		2003	2015		
1	10		33%	3,30%		0,85

A

b ER