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IEA Energy Technology & Policy Activities

n Where	do	we	need	to	go?

n Where	are	we	today?

n How	do	we	get	there?

Scenarios	and	Modelling

Statistics	and	trends

Technology	Roadmaps
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IEA energy modelling and scenarios

n System	Integration:	Analysis	of	flexibility	
resources/market	design	for	vRE

n Forecasts	(next	5	years)	:									Medium-
term	Market	Reports

n Market-based	scenarios	(out	to	2040):	
World	Energy	Outlook

n Long-term	planning	scenarios	(out	to	2060):	
Energy	Technology	Perspectives
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ETP modelling framework 
End-use	sectors Service	demands

TIMES	models
Industry

Long-term	simulation
Buildings

Mobility	Model	(MoMo)
Transport

Primary	energy Conversion	sectors Final	energy

Electricity

Gasoline

Diesel

Natural	gas

Heat

etc.

Passenger	mobility
Freight	transport

…

Space	heating
Water	heating

Lighting
…

Material	demands
…

Renewables

Fossil

Nuclear

Electricity	T&D

Fuel	conversion

Fuel/heat	delivery
ETP-TIMES	Supply	model	(bottom-up	optimisation)

Electricity	and	heat	
generation

• Four	soft-linked	models	based	on	simulation	and	optimisation modelling	methodologies

• Model	horizon:	2014-2060	in	5	year	periods

• World	divided	in	28-42	model	regions/countries	depending	on	sector

• For	power	sector	linkage	with	TIMES	dispatch	model	for	selected	regions	to	analyse electricity	system	flexibility
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How far can technology take us?

Pushing	energy	technology	to	achieve	carbon	neutrality	by	2060	
could	meet	the	mid-point	of	the	range	of	ambitions	expressed	in	Paris.

Technology area contribution to global cumulative CO2 reductions 

Efficiency	40%

Renewables	
35%
Fuel	switching	
5%
Nuclear	6%

CCS	14%

Efficiency	34%

Renewables	15%

Fuel	switching	18%

Nuclear	1%

CCS	32%

Global	CO2 reductions	by	technology	area

2	degrees	Scenario	– 2DS

Reference	Technology	Scenario	– RTS

Beyond	2	degrees	Scenario	– B2DS

0 200 400

Gt	CO2 cumulative	reductions	in	2060

2060



©	OECD/IEA	2017

The potential of clean energy technology remains under-utilised

Recent	progress	in	some	clean	energy	areas	is	promising,	but	many	technologies	still	need	a	strong	push	to	achieve	their	
full	potential	and	deliver	a	sustainable	energy	future.

Energy	storage		
Solar	PV	and	onshore	wind			

Building	construction			

Nuclear			
Transport	– Fuel	economy	of	light-duty	vehicles		

Lighting,	appliances	and	building	equipment		

Electric	vehicles		

Energy-intensive	industrial	processes		

Transport	biofuels			

Carbon	capture	and	storage			
More	efficient	coal-fired	power			

●Not	on	track

●Accelerated	improvement	needed

●On	track
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Decarbonising electricity

Renewables	dominate	electricity	generation	in	the	2DS	and	B2DS,	with	wind	and	solar	energy	providing	almost	half	of	
the	global	electricity	demand	in	2060	in	the	B2DS.

Global	electricity	generation	B2DS Generation	mix
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Work on experience curves at the IEA

• Conceptual	and	methodological	work	on	
experience	curves

• (Exogeneous)	use	of	experience	curves	in	
ETP	&	WEO	modelling

• Technology	assessments,	e.g.	tracking	
clean	energy	progress,	technology	
roadmaps,	medium-term	reports

• In	the	broader	context	of	technology	
innovation	and	RD&D	policy,	e.g.	ETP	
2015,	IEA’s	Experts'	Group	on	R&D	
Priority	Setting	and	Evaluation	(EGRD)

• IEA’s	Technology	Collaboration	
Programmes	(TCPs),	e.g.	use	of	ETL	in	
ETSAP’s	MARKAL/TIMES	model
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Use of experience curves in ETP modelling

• Exogenous	treatment	of	experience	curves	(1-
FLC)	using	an	iterative	approach	

• Driven	by	model	size	and	computational	
limitations	for	using	instead	an	endogenous	
approach	based	on	MIP

• Additional	growth	constraints	to	avoid	“wait-
and-see/free-rider”	behaviour	by	postponing	
deployment	to	later	periods,	partly	influenced	
already	through	current	policy	support	
mechanism	leading	to	early	deployment	(ETL	
may	lead	to	opposite	behaviour,	i.e.	too	rapid,	
early	deployment)

• Simplified	model	(in	terms	of	model	regions),	
but	with	ETL,	could	be	a	complementary	
approach	to	derive	cost	trajectories	for	larger	
model.
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Deployment costs and learning investments

Example:	
Global	cumulative	learning	investments	for	solar	PV	fall	from	USD	1.9	trillion	in	the	RTS	to	USD	1.2	trillion	in	the	2DS.

Cumulative	installed	
capacity	for	learning	technology
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Deployment	costs	for	learning	
technology	(dotted	area)

Learning	
investmentsIncumbent	technology	

with	CO2 price

Learning	technology

Incumbent	
technology	costs	
without	CO2 price

Incumbent	technology	
without	CO2 price

Additional	costs	for	incumbent	technology
due	to	increasing	CO2	price	over	time
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Cost reductions for power generation technologies
with experience curves in 2DS
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Challenges in the use of experience curves

• Energy	technologies	often	consist	of	various	components,	with	different	drivers	influencing	
their	costs,	e.g.:
- Solar	PV	system:	 PV	module	+	Balance-of-system	(BOS)
- Battery	system:	 Battery	pack	+	Power	conversion	system	+	Energy	management	 system	+	BOS
- CCS	power	plant:	 Conventional	power	plant	+	CO2 capture	equipment

• Global	versus	local learning
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Learning curve approach for solar PV:
Separate learning for PV module and BOS

• Increasing	share	of	BOS	in	total	specific	investment	costs	for	PV	systems

• Chosen	approach:
- PV	module:	 global	learning

- BOS: regional	learning

• Learning	rate	for	BOS?
- Current	approach:	same	learning	rate	for	module	and	BOS

- Elshurafa et	al.	(2017)	estimated	learning	rate	of	11%	for	BOS	of	residential	PV	systems.
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Challenges in the use of experience curves

• Experience	curve	formulation	and	model	implementation

• Experience	curve	parameters	for	technologies,	when	only	limited	deployment	so	far	(and	
hence	few	data	points	available):
- Expert	elicitation
- Drawing	analogies	from	similar	technologies

• Energy	technologies	often	consist	of	various	components,	with	different	drivers	influencing	
their	costs,	e.g.:
- Solar	PV	system:	 PV	module	+	Balance-of-system	(BOS)
- Battery	system:	 Battery	pack	+	Power	conversion	system	+	Energy	management	 system	+	BOS
- CCS	power	plant:	 Conventional	power	plant	+	CO2 capture	equipment

• Global	versus	local learning
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Which learning rate, when only limited deployment so far?

• Review	by	Dutton	and	Thomas	(1984)	of	manufacturing	industries	such	as	electronics,	machine	tools,	system	
components	for	electronic	data	processing,	papermaking,	aircraft,	steel,	apparel,	and	automobiles	shows	82%	as	
most	probable	progress	ratio	(or	18%	learning	rate).

• McDonald	and	Schrattenholzer (2001)	estimated	around	14%	as	median	for	energy	conversion	technologies.

Distribution	of	progress	ratios

Source:	Dutton,	J.M.	and	Thomas,	A.	(1984),	
Treating	Progress	Functions	as	a
Managerial	Opportunity	in	IEA	(2000),	
Experience	curves	for	energy	technology	
policy;	McDonald	and	Schrattenholzer
(2001),	Learning	rates	for	energy	
technologies.
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Which learning rate, when only limited deployment so far? (2)

• Drawing	analogies	from	similar	technologies

• In	ETP,	learning	curve	approach	used	for	additional	
CAPEX	of	capture	equipment

Example:	CCS	power	technologies

Sources:	Rubin	et	al.	(2007),	Use	of	experience	curves	to	estimate	the	future	cost	of	power	plants	
with	CO2 capture;	Van	den	Broeck et	al.	(2009),	Effects	of	technological	learning	on	future	cost	and	
performance	of	power	plants	with	CO2 capture.
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Challenges in the use of experience curves

• Energy	technologies	often	consist	of	various	components,	with	different	drivers	influencing	
their	costs,	e.g.:
- Solar	PV	system:	 PV	module	+	Balance-of-system	(BOS)
- Battery	system:	 Battery	pack	+	Power	conversion	system	+	Energy	management	 system	+	BOS
- CCS	power	plant:	 Conventional	power	plant	+	CO2 capture	equipment

• Global	versus	local learning

• Experience	curve	formulation	and	model	implementation

• Experience	curve	parameters	for	technologies,	when	only	limited	deployment	so	far	(and	
hence	few	data	points	available):
- Expert	elicitation
- Drawing	analogies	from	similar	technologies

• Quantifying	R&D	impacts on	technology	costs	and	performance
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Global clean energy RD&D spending needs a strong boost

Global	RD&D	spending		in	efficiency,	renewables,	nuclear	and	CCS	plateaued	at	$26	billion	annually,	
coming	mostly	from	governments.	

Global	clean	energy	RD&D	spending	
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Mission	
Innovation
Mission	

Innovation

Top	3	IT	company	R&D	spenders

Global	RD&D	spending	in	efficiency,	renewables,	nuclear	and	CCS	plateaued	at	$26	billion	annually,
coming	mostly	from	governments.	

Mission	Innovation	could	provide	a	much	needed	boost.
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Quantifying the impact of R&D

• Current	work	of	IEA	focussing	on	better	tracking	R&D	spending	on	clean	energy	technologies

• Some	challenges	in	its	use:
- Interdependencies	between	LBD	and	LBS
- No	straightforward	way	of	measuring	effectiveness	of	R&D:

- Expert	elicitation

- Statistical	decomposition	(if	data	available)

- Mixed	approaches

- R&D	spending	data
- Implementation	in	large-scale	energy	models

• Taking	into	account	in	addition	to	learning-by-doing	(LBD)	further	drivers	influencing	learning.	Notably	
learning-by-searching	(LBS),	i.e.	R&D,	resulting	in	2-factor	learning	curve	(2-FLC):

𝐶𝐴𝑃𝐸𝑋& = 𝐶𝐴𝑃𝐸𝑋(
𝐶𝐶𝐴𝑃&
𝐶𝐶𝐴𝑃(

)* 𝑅&𝐷&
𝑅&𝐷(

). 𝐿𝑅012 = 1 − 2)*
𝐿𝑅016 = 1 − 2).

CA
PE
X

CCAP

R&D
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Beyond individual energy technologies: 
Impact of digitalisation & learning on system level
• Dramatic	performance	improvements	and	cost	reductions	not	only	in	computer	hardware,	but	also	

numerical	methods.	
• Example:	Improvements	in	Mixed	Integer	Programming	solvers

Sources:	Bixby,	R.	(2017),	Computational	Progress	in	Linear	and	Mixed	Integer	Programming; Bixby,	Rothberg	and	Gu	(2010),	
The	Latest	Advances	in	Mixed-Integer	Programming	Solvers.
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Conclusions

• Experience	curves	can	be	a	powerful	instrument	for	strategic	analysis	of	technologies	to	
understand	their	current	progress	and	explore	future	deployment	pathways.

• Still	challenges	in	the	use	of	learning	curves	for	“established”	technologies,	such	as	learning	
for	BOS	or	regional	versus	global	learning.

• For	emerging	technologies	with	less	empirical	evidence,	expert	judgement	or	drawing	
analogies	from	similar	technologies	can	be	a	way	to	estimate	learning	curve	parameters.

• Uncertainty	around	the	impact	of	R&D	highlights	the	importance	of	sensitivity	analysis	to	
derive	robust	results	through	modelling.

• Endogenous	representation	of	learning	curves	still	numerically	challenging	in	larger	energy	
models;	smaller	“sandbox”	models	(e.g.	less	regions)	may	be	an	alternative	approach	to	
explore	the	impacts	of	endogenous	learning	and	inform	larger	models.
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Infrastructure becomes more distributed

Batteries	experience	a	huge	scale-up	in	the	B2DS,	with	EV	battery	markets	leading	other	sectors	in	size

Installed	battery	storage	and	costs	under	various	scenarios	
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